You are here

Our offices will be closed from Monday, December 23rd, to Wednesday, January 1st. Normal operations, including order shipping, will resume on Thursday, January 2nd. For technical support during this time, visit our support page.

Disable VAT on Taiwan

Unfortunately, as of 1 January 2020 SAGE Ltd is no longer able to support sales of electronically supplied services to Taiwan customers that are not Taiwan VAT registered. We apologise for any inconvenience. For more information or to place a print-only order, please contact uk.customerservices@sagepub.co.uk.

An Introduction to Exponential Random Graph Modeling
Share
Share

An Introduction to Exponential Random Graph Modeling



February 2014 | 136 pages | SAGE Publications, Inc
This volume introduces the basic concepts of Exponential Random Graph Modeling (ERGM), gives examples of why it is used, and shows the reader how to conduct basic ERGM analyses in their own research. ERGM is a statistical approach to modeling social network structure that goes beyond the descriptive methods conventionally used in social network analysis. Although it was developed to handle the inherent non-independence of network data, the results of ERGM are interpreted in similar ways to logistic regression, making this a very useful method for examining social systems. Recent advances in statistical software have helped make ERGM accessible to social scientists, but a concise guide to using ERGM has been lacking. This book fills that gap, by using examples from public health, and walking the reader through the process of ERGM model-building using R statistical software and the statnet package.

An Introduction to Exponential Random Graph Modeling is a part of SAGE’s Quantitative Applications in the Social Sciences (QASS) series, which has helped countless students, instructors, and researchers learn cutting-edge quantitative techniques. Learn more about the QASS series here.
 
1. The Promise and Challenge of Network Approaches
 
2. Statistical Network Models
 
3. Building a Useful Exponential Random Graph Model
 
4. Extensions of the Basic Model for Directed Networks and Using Dyadic Attributes as Predictors
 
5. Conclusion and Recommendations

Supplements

Appendices

Click the "Preview" tab above to download: 

  • Appendix A: R Commands
  • Appendix B: Modifying R-ergm Model Summary Procedure Using Fix()

Sample Materials & Chapters

Appendices: R Code

Chapter 3


For instructors

Purchasing options

Please select a format:

ISBN: 9781452220802
£34.99

SAGE Research Methods is a research methods tool created to help researchers, faculty and students with their research projects. SAGE Research Methods links over 175,000 pages of SAGE’s renowned book, journal and reference content with truly advanced search and discovery tools. Researchers can explore methods concepts to help them design research projects, understand particular methods or identify a new method, conduct their research, and write up their findings. Since SAGE Research Methods focuses on methodology rather than disciplines, it can be used across the social sciences, health sciences, and more.

With SAGE Research Methods, researchers can explore their chosen method across the depth and breadth of content, expanding or refining their search as needed; read online, print, or email full-text content; utilize suggested related methods and links to related authors from SAGE Research Methods' robust library and unique features; and even share their own collections of content through Methods Lists. SAGE Research Methods contains content from over 720 books, dictionaries, encyclopedias, and handbooks, the entire “Little Green Book,” and "Little Blue Book” series, two Major Works collating a selection of journal articles, and specially commissioned videos.