You are here

Our offices will be closed from Monday, December 23rd, to Wednesday, January 1st. Normal operations, including order shipping, will resume on Thursday, January 2nd. For technical support during this time, visit our support page.

Disable VAT on Taiwan

Unfortunately, as of 1 January 2020 SAGE Ltd is no longer able to support sales of electronically supplied services to Taiwan customers that are not Taiwan VAT registered. We apologise for any inconvenience. For more information or to place a print-only order, please contact uk.customerservices@sagepub.co.uk.

Statistics for the Health Sciences
Share
Share

Statistics for the Health Sciences
A Non-Mathematical Introduction



March 2012 | 584 pages | SAGE Publications Ltd

Statistics for the Health Sciences is a highly readable and accessible textbook on understanding statistics for the health sciences, both conceptually and via the SPSS programme. The authors give clear explanations of the concepts underlying statistical analyses and descriptions of how these analyses are applied in health science research without complex maths formulae.

The textbook takes students from the basics of research design, hypothesis testing and descriptive statistical techniques through to more advanced inferential statistical tests that health science students are likely to encounter. The strengths and weaknesses of different techniques are critically appraised throughout, and the authors emphasise how they may be used both in research and to inform best practice care in health settings.

Exercises and tips throughout the book allow students to practice using SPSS. The companion website provides further practical experience of conducting statistical analyses. Features include:

• multiple choice questions for both student and lecturer use

• full Powerpoint slides for lecturers

• practical exercises using SPSS

• additional practical exercises using SAS and R

This is an essential textbook for students studying beginner and intermediate level statistics across the health sciences.

 
PART ONE: AN INTRODUCTION TO THE RESEARCH PROCESS
 
Overview
 
The Research Process
 
Concepts and Variables
 
Levels of Measurement
 
Hypothesis Testing
 
Evidence-Based Practice
 
Research Designs
 
Multiple-Choice Questions
 
PART TWO: COMPUTER-ASSISTED ANALYSIS
 
Overview
 
Overview of the Three Statistical Packages
 
Introduction to SPSS
 
Setting out Your Variables for within - and between-Group Designs
 
Introduction to R
 
Introduction to SAS
 
Summary
 
Exercises
 
PART THREE: DESCRIPTIVE STATISTICS
 
Overview
 
Anaylsing Data
 
Descriptive Statistics
 
Numerical Descriptive Statistics
 
Choosing a Measure of Central Tendency
 
Measures of Variation or Dispersion
 
Deviations from the Mean
 
Numerical Descriptives in SPSS
 
Graphical Statistics
 
Bar Charts
 
Line Graphs
 
Incorporating Variability into Graphs
 
Generating Graphs with Standard Deviations in SPSS
 
Graphs Showing Dispersion - Frequency Histogram
 
Box-Plots
 
Summary
 
SPSS Exercise
 
Multiple Choice Questions
 
PART FOUR: THE BASIS OF STATISTICAL TESTING
 
Overview
 
Introduction
 
Samples and Populations
 
Distributions
 
Statistical Significance
 
Criticisms of NHST
 
Generating Confidence Intervals in SPSS
 
Summary
 
SPSS Exercise
 
Multiple Choice Questions
 
PART FIVE: EPIDEMIOLOGY
 
Overview
 
Introduction
 
Estimating the Prevalence of Disease
 
Difficulties in Estimating Prevalence
 
Beyond Prevalence: Identifying Risk Factors for Disease
 
Risk Ratios
 
The Odds-Ratio
 
Establishing Causality
 
Case-Control Studies
 
Cohort Studies
 
Experimental Designs
 
Summary
 
Multiple Choice Questions
 
PART SIX: INTRODUCTION TO DATA SCREENING AND CLEANING
 
Overview
 
Introduction
 
Minimising Problems at the Design Stage
 
Entering Data into Databases/Statistical Packages
 
The Dirty Dataset
 
Accuracy
 
Using Descriptive Statistics to Help Identify Errors
 
Missing Data
 
Spotting Missing Data
 
Normality
 
Screening Groups Separately
 
Reporting Data Screning and Cleaning Procedures
 
Summary
 
Multiple Choice Questions
 
PART SEVEN: DIFFERENCES BETWEEN TWO GROUPS
 
Overview
 
Introduction
 
Conceptual Description of the t-Tests
 
Generalising to the Population
 
Independent Groups t-Test in SPSS
 
Cohen's d
 
Paired t-Test in SPSS
 
Two-Sample z-Test
 
Non-Parametric Tests
 
Mann-Whitney: for Independent Groups
 
Mann-Whitney Test in SPSS
 
Wilcoxon Signed Rank Test: For Repeated Measures
 
Wilcoxon Signed Rank Test in SPSS
 
Adjusting for Multiple Tests
 
Summary
 
Multiple Choice Questions
 
PART EIGHT: DIFFERENCES BETWEEN THREE OR MORE CONDITIONS
 
Overview
 
Introduction
 
Conceptual Description of the (Parametric) ANOVA
 
One-Way ANOVA
 
One-way ANOVA in SPSS
 
ANOVA Models for Repeated-Measures Designs
 
Repeated Measures ANOVA in SPSS
 
Non-parametric Equivalents
 
The Kruskal-Wallis Test
 
Kruskal-Wallis and the Median Test in SPSS
 
The Median Test
 
Friedman's ANOVA for Repeated Measures
 
Friedman's ANOVA in SPSS
 
Summary
 
Multiple Choice Questions
 
PART NINE: TESTING ASSOCIATIONS BETWEEN CATEGORICAL VARIABLES
 
Overview
 
Introduction
 
Rationale of Contingency Table Analysis
 
Running the Analysis in SPSS
 
Measuring Effect Size in Contingency Table Analysis
 
Larger Contingency Tables
 
Contingency Table Analysis Assumptions
 
The X2 Goodness of Fit Test
 
Running the X2 Goodness of Fit Test Using SPSS
 
Summary
 
Multiple Choice Questions
 
PART TEN: MEASURING AGREEMENT: CORRELATIONAL TECHNIQUES
 
Overview
 
Introduction
 
Bivariate Relationships
 
Perfect Correlations
 
Calculating the Correlation Pearson's R Using SPSS.
 
How to obtain Scatterplots
 
Variance Explanation of R
 
Obtaining Correlational Analysis in SPSS: Exercise
 
Partial Correlations
 
Shared and Unique Variance: Conceptual Understanding Relating to Partial Corrections
 
Spearman's Rho
 
Other uses for Correlational Techniques
 
Reliability of Measures
 
Internal Consistency
 
Inter Rater Reliability
 
Validity
 
Percentage Agreement
 
Cohen's Kappa
 
Summary
 
Multiple Choice Questions
 
PART 11: LINEAR REGRESSION
 
Overview
 
Introduction
 
Linear Regression in SPSS
 
Obtaining teh Scatterplot with Regression Line and Confidence Intervals in SPSS
 
Assumptions Underlying Linear Regression
 
Dealing with Outliers
 
What happens if the Correlation Between X and Y is Near Zero?
 
Using Regression to Predict Missing Data in SPSS
 
Prediction of Missing Scores on Cognitive Failures in SPSS
 
Summary
 
Multiple-Choice Questions
 
PART TWELVE: STANDARD MULTIPLE REGRESSION
 
Overview
 
Introduction
 
Multiple Regression in SPSS
 
Variables in the Equation
 
The Regression Equation
 
Predicting an Individual's Score
 
Hypothesis Testing
 
Other Types of Multiple Regression
 
Hierarchical Multiple Regression
 
Summary
 
Multiple Choice Questions
 
PART THIRTEEN: LOGISTIC REGRESSION
 
Overview
 
Introduction
 
The Conceptual Basis of Logistic Regression
 
Writing up the Result
 
Logistic Regression with Multiple Predictor Variables
 
Logistic Regression with Categorical Predictors
 
Categorical Predictors with Three or More Levels
 
Summary
 
Multiple Choice Questions
 
Interventions and Analysis of Change
 
Overview
 
Interventions
 
How do we Know Whether Interventions are Effective?
 
Randomised Control Trials (RCTs)
 
Designing an RCT: CONSORT
 
The CONSORT Flow Chart
 
Important Features of an RCT
 
Blinding
 
Analysis of RCTs
 
Running an ANCOVA in SPSS
 
McNemar's Test of Change
 
Running McNemar's Test in SPSS
 
The Sign Test
 
Running the Sign Test using SPSS
 
Intention to Treat Analysis
 
Crossover Designs
 
Single Case Designs (N= 1)
 
Generating Single Case Design Graphs Using SPSS
 
Summary
 
SPSS Exercise
 
Multiple Choice Questions
 
PART FIFTEEN: SURVIVAL ANALYSIS: AN INTRODUCTION
 
Overview
 
Introduction
 
Survival Curves
 
The Kaplan-Meier Survival Function
 
Kaplan-Meier Survival Analyses in SPSS
 
Comparing Two Survival Curves - the Mantel-Cox test
 
Mantel-Cox using SPSS
 
Hazard
 
Hazard Curves
 
Hazard Functions in SPSS
 
Writing up a Survival Analysis
 
Summary
 
SPSS Exercise
 
Multiple Choice Questions

'Statistics for the Health Sciences engagingly presents the key analytic issues that students and professionals need to understand in the most accessible and vivid way possible. Full of real examples and practical exercises, the book successfully avoids getting bogged down with complex maths and formulae' -
Dennis Howitt at Loughborough University

The chapter overviews, absence of statistical formulae and use of appropriate examples and student exercises make this a very 'hands on' and practical text' -

Merryl E Harvey, Birmingham City University


It provides key Statistical concepts that my students need to succed in their Boistatistics class. They like the non-mathematical approach to explain statistics.

Dr Jean Amost Cadet
Nursing, Andrews University-Michigan
April 15, 2020

I like the non mathematical approach taken. I think the SPSS exercises will be invaluable for the students. it seems to be an easy read for the beginning student in statistics. I looked at many books and made a decision to go with this one.

Dr Lesley Beagrie
Faculty of health, York University
May 27, 2015

An excellent introduction to data handling. Material is explained in a very accessible style, and good examples are utilised to demonstrate ideas. Very useful tests are provided with each chapter, and the companion website allows students to learn in an interactive manner. An excellent addition to the introductory statistics literature.

Miss Erika Shilling
Lifelong Learning Centre, University of Leeds
December 11, 2014

altough very clear textbook, good support with screenshots and extra information, my other collegues preferred a dutch spss handbook

Mr Danny Van heusden
Faculty of Medicine, University of Antwerp
November 13, 2014

altough very clear textbook, good support with screenshots and extra information, my other collegues preferred a dutch spss handbook

Mr Danny Van heusden
Faculty of Medicine, University of Antwerp
November 13, 2014

Hi thank you fo rthe reminder! I had forgotten to review this book and have just done so. At first glance I thought it a bit wordy but then when I had a good look I realised it had alot of useful material and the spss information was very good. I am starting the lectures tomorrow with my second years and I will now recommend this book to them as one they should have on their shelf as a very useful reference for the course and for their future practice.

Catherine Comiskey
School of Nursing and Midwifery, Trinity College Dublin
September 30, 2014

A very informative and clear textbook

Mr Mahmoud Ismael
Faculty of Pharmacy, Assiut Univ.
July 2, 2014

This is a very accessible book on statistical methods. I found the chapter on survival analysis very interesting and easy to understand.

Dr Mansour Pourmehdi
The Graduate School, Bradford University
February 16, 2014

Using it for undergraduate Health Statistics course - 1st time this coming semester. Will let you know how it works out.

Mr Robert Lavery
health and nutrition sciences, Montclair State University
January 15, 2014

Sample Materials & Chapters

Chapter 1